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ABSTRACT

Name: Bilal Ahmed Qureshi

Title of Study: The Impact of Cost and Fouling on Heat Exchanger Inventory in

Power and Refrigeration Systems
Major Field: Mechanical Engineering

Date of Degree: March, 2014

The first part of this study focuses on predicting the effect of variation in
inventory (overall conductance) allocated on power and refrigeration systems wherein
fouling, which results in decrease of this inventory, is considered as a main application.
Experimental work was performed on a 1.5 ton vapor compression system which showed
that system parameters and properties varied logarithmically when overall conductance
was reduced. Then specific examples of power and refrigeration systems were simulated
beginning with endoreversible single-stage cycles and then the Rankine and simple vapor
compression cycles. Based upon these simulations and the experimental work, an
equation was proposed to predict effect of reduction in overall conductance on all system
properties and performance parameters using non-dimensional quantities. Agreement was
found to be within 1.15% of simulated and predicted values. Such an equation helps to

reduce the number of experiments and/or numerical simulations.

Xvil



The second part of this study focused on thermoeconomic optimization of
different power and refrigeration systems for endoreversible and irreversible cases using
the allocated heat exchanger inventories. The systems investigated include a
thermodynamic model of a vapor compression cycle with dedicated mechanical
subcooling as well as endoreversible cases of the dedicated and integrated mechanical
subcooling cycles along with an endoreversible power cycle with one feedwater heater. It
was found that a practical minimum with respect to the dimensionless cost equations for
the fluid to ambient high-side absolute temperature ratio existed for all cost equations.
The connection between endoreversible and irreversible cycles for this ratio was shown
to establish viability of the endoreversible results. Furthermore, it was found that the cost
functions for simpler cycles can be derived from those of more complex systems. Also, if
the only difference between a power and refrigeration cycle is that the cycle is flowing in
the opposite direction, then multiplying a minus sign on one side of the cost equations of
a system would provide the cost equations for the other system. F inally, a holistic view of
cost optimization in power and refrigeration systems is presented, which constitutes a
step forward in thermoeconomic optimization theory as it resulted in generalized cost

equations.

DOCTOR OF PHILOSOPHY IN MECHANICAL ENGINEERING
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ABSTRACT

Name: Bilal Ahmed Qureshi

Title of Study: The Impact of Cost and Fouling on Heat Exchanger Inventory in

Power and Refrigeration Systems
Major Field: Mechanical Engineering

Date of Degree: March, 2014

The first part of this study focuses on predicting the effect of variation in
inventory (overall conductance) allocated on power and refrigeration systems wherein
fouling, which results in decrease of this inventory, is considered as a main application.
Experimental work was performed on a 1.5 ton vapor compression system which showed
that system parameters and properties varied logarithmically when overall conductance
was reduced. Then specific examples of power and refrigeration systems were simulated
beginning with endoreversible single-stage cycles and then the Rankine and simple vapor
compression cycles. Based upon these simulations and the experimental work, an
equation was proposed to predict effect of reduction in overall conductance on all system
properties and performance parameters using non-dimensional quantities. Agreement was
found to be within 1.15% of simulated and predicted values. Such an equation helps to

reduce the number of experiments and/or numerical simulations.

Xvil



The second part of this study focused on thermoeconomic optimization of
different power and refrigeration systems for endoreversible and irreversible cases using
the allocated heat exchanger inventories. The systems investigated include a
thermodynamic model of a vapor compression cycle with dedicated mechanical
subcooling as well as endoreversible cases of the dedicated and integrated mechanical
subcooling cycles along with an endoreversible power cycle with one feedwater heater. It
was found that a practical minimum with respect to the dimensionless cost equations for
the fluid to ambient high-side absolute temperature ratio existed for all cost equations.
The connection between endoreversible and irreversible cycles for this ratio was shown
to establish viability of the endoreversible results. Furthermore, it was found that the cost
functions for simpler cycles can be derived from those of more complex systems. Also, if
the only difference between a power and refrigeration cycle is that the cycle is flowing in
the opposite direction, then multiplying a minus sign on one side of the cost equations of
a system would provide the cost equations for the other system. F inally, a holistic view of
cost optimization in power and refrigeration systems is presented, which constitutes a
step forward in thermoeconomic optimization theory as it resulted in generalized cost

equations.
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CHAPTER 1

INTRODUCTION

In this chapter, the main points of discussion will be the motivation, objectives

and method of solution of this research work.
1.1 Motivation

Heat exchanger inventory is an expensive commodity. The effects of its
allocation, reduction during operation (due to fouling) as well as optimizing the heat
exchanger inventory of these cycles has been a subject of much discussion. Conductances
are not unlimited in availability and thus have a certain dollar value attached to them that
must be distributed wisely. This entails not only distribution with consideration of best
performance but also of lowest cost. Thermoeconomics is a known method for this type
of optimization. Furthermore, experimental and numerical work related to fouling

consumes time and money. If a mathematical model can be presented that can help to



2
predict necessary parameters of the system, this can help to reduce the number of

experiments and numerical simulations.
1.2 General Background

The heat exchanger inventory is defined as the sum of the conductances of the
condenser and evaporator in a power or refrigeration cycle. One of the cornerstones of
sustainable development is the cost-effective fuel saving of systems that use or produce
useful energy. This, in turn, calls for more intensive and extensive system analysis while
the system is still in its design phase. Such analysis has to be multi-disciplinary.
Accessing the analysis from the discipline of thermodynamics is the advantage of
thermoeconomics. Thermoeconomics was first developed during the sixties. The name
was coined by professor M. Tribus [1]. Development of thermoeconomics to handle
energy-intensive systems in general was initiated by R. Gaggioli [2-3]. In the last 25
years, the development of thermoeconomics has been impressive. Works related to

endoreversible thermoeconomics by De Vos [4-5] constitutes one approach.

Where there are heat exchangers, fouling will often inevitably follow. Fouling
studies are performed to ascertain the effect on performance parameters so that
contingency plans can be adopted for times of failure or clean up schedules drawn up to
avoid the former. Heat exchangers are one of the main components of these systems.
Therefore, even a small performance degradation, due to fouling, has the potential to

cause further energy consumption and/or decrease cooling capacity along with the
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efficiency. This results in higher costs of running the equipment. Foulants vary in nature
from mold compounds, human hair and textile fibers to airborne particulate matter and
dust [6] but they all result in an overall decrease in the ability of the heat exchanger to
transfer heat. Heat exchanger design is based on best practice values and experience
related to fouling resistance. Experimental and numerical studies on fouling, when done
correctly, often take a great amount of time and incur hi gh costs. Reducing the number of
experiments, thus, becomes a matter of great interest as this will result in saving of both

time and money.
1.3 Thesis Objectives

The overall objective of this thesis dissertation is to examine the impact of fouling
and cost-based optimization on both power and refrigeration systems. In this regard, the

following specific objectives are proposed:

* To investigate a model, applicable to both power and refrigeration systems, that
can predict the effect of reduction in conductance (UA), due to fouling, on these

systems.

* Application of the proposed performance degradation model on vapor

compression and power cycles using thermodynamic models.

* Experimental evaluation of the performance characteristics of a vapor

compression cycle, under fouled conditions.
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* Thermoeconomic optimization using a thermodynamic model for a vapor

compression refrigeration system.

 Thermoeconomic optimization for a Carnot representation of a mechanical

subcooling system.

* Thermoeconomic optimization of a vapor compression cycle with mechanical

subcooling using a thermodynamic model.

1.4 Inventory Reduction due to Fouling: Research Approach

 The first objective mentioned is to develop a model to predict effect of fouling
resulting in UA-degradation on all system (properties and performance) parameters. A
model will be presented that is to be used to connect three types of cases: 1) Fouling in
the HX on high temperature-side only, 2) Fouling in the HX on low temperature-side
only, and 3) Fouling (equally) in the HX on both high and low-temperature-side. The
UA-value, which represents the conductance affected due to fouling, will be decreased
from 0 to 50% to simulate the three cases mentioned. Using these simulations, an attempt
will be made to develop a relationship between these three types of cases. Once this is
achieved, thermodynamic models of both power and refrigeration cycles will be

simulated to ascertain practical applicability of the proposed model.

Experimental evaluation of the performance characteristics of a vapor

compression cycle, under fouled conditions, will also be done. For this purpose, a 1.5 ton
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